- 城市微气候变化的影响与规划应对
- 文章编号:1009-6000(2022)07-0029-06
- 中图分类号:U491 文献标识码:B
- Doi:10.3969/j.issn.1009-6000.2022.07.005
- 项目基金:国家自然科学基金项目(51978617)
- 作者简介:邓一凌,浙江工业大学设计与建筑学院副教授,硕士生导师,研究方向为交通运输规划与管理;
纪桂林,浙江工业大学设计与建筑学院硕士研究生。
- 天气因素对公交客流量的影响研究
- Impact of Weather on Transit Ridership
- 浏览量:
- 邓一凌 纪桂林
- DENG Yiling JI Guilin
- 摘要:
公交客流量是公交企业在经营中最关注的经济指标,研究天气因素对公交客流量的影响可以帮助公交企业提前应对天气变化造成的公交客流量波动。利用2014 年8—12 月广州市6 路公交的刷卡数据和日平均及小时天气数据,将公交客流量残差作为因变量,气温、天气状况、风力作为自变量,基于多元线性回归方法分别建立经常性乘客和偶发性乘客的工作日、休息日公交日客流量和小时客流量模型。研究发现,天气对公交客流量的影响随着乘客类型(经常性/ 偶发性)的不同、出行模式(工作日/ 休息日)的不同呈现明显的差异性:小雨、中雨/ 大雨会显著降低公交客流量,休息日相比工作日、偶发性乘客相比经常性乘客更加明显;雷阵雨会显著增加偶发性乘客的公交客流量,但对于经常性乘客的影响不显著;气温、多云、阴、雾对公交客流量的影响仅在小时模型中显著。最后从公交运营、公交站点设计及站点周边步行环境设计等方面提出了应对不利天气的建议。 - 关键词:
城市交通;天气;公交客流量;公交卡数据;多元线性回归Abstract:Transitridershipisthemostimportanteconomicindicatorinthe; - Abstract: Transit ridership is the most important economic indicator in the operation of public transit enterprises. Understanding the impact of weather on transit ridership can help transit enterprises deal with ridership fl uctuations caused by weather change. With the IC card data of Bus No.6 in Guangzhou and the daily average and hour weather data of Guangzhou from August to December 2014, the day and hour ridership models for regular and occasional passengers in weekdays and weekends were developed using multivariate linear regression. Ridership residuals are taken as the dependent variable; temperature, weather conditions, and wind are taken as the independent variables. This study found that the eff ect of weather on ridership is signifi cantly diff erent between regular and occasional passengers and between weekdays and weekends. Light and moderate/heavy rain signifi cantly reduce ridership, which is more obvious in weekdays than in weekends and for occasional passengers than for regular passengers. Thundershower signifi cantly increases the ridership of occasional passengers but insignifi cantly impacts the ridership of regular passengers. The eff ects of temperature, cloudy, overcast, and fog on ridership are only signifi cant in the hour models. This study concludes with recommendations for dealing with adverse weather conditions in terms of bus operations, bus stop design, and the design of the walking environment around bus stops.
- Key words: urban traffi c; weather; transit ridership; transit smart card data; multivariate linear regression
期刊浏览
2024 年
2023 年
2022 年
2021 年
2020 年
2019 年
2018 年
2017 年
2016 年
2015 年
2014 年
2013 年
2012 年
2011 年
2010 年
2009 年
2008 年
2007 年
2006 年
2005 年
2004 年
2003 年
2002 年
1999 年